Question		Answer	$\begin{array}{\|c\|} \hline \text { Marks } \\ \hline 2 \end{array}$	Part Marks and Guidance	
1	(a	$\begin{aligned} & p=12 \\ & r=9 \end{aligned}$		B1 each	
	(b)	$\begin{aligned} & 5 c-c n=9 d-6 d[\text { or }=3 d] \\ & c(5-n)=9 d-6 d[\text { or }=3 d] \text { or FT } \\ & {[c=] \frac{3 d}{5-n} \text { oe }} \end{aligned}$	M1 M1 A1	For collecting c terms on one side, nonc terms on the other; condone one error For factorising; may be implied by final answer Numerator must be simplified	

2 a	$p=\frac{t+3}{2}$	2	Oe final answer M1 for $t+3=2 p$ oe or $\frac{t}{2}=p-\frac{3}{2}$ or $\frac{t+3}{2}$ Or SC1 for final answer $p=\frac{t}{2}+$ or $p=\frac{t-3}{2}$ or $p=t+\frac{3}{2}$ oe or $p=t+3 \div 2$ or $p=\frac{-t-3}{2}$ oe	
(b)	$x=2 y=5$	2	B1 for $x=2$ or $y=5$ or for $x=5$ and $y=2$ Or M1 for attempt to add/subtract equations	Answers reversed With 2 of the 3 terms correct

3	$C+5 p=a C-a p$ $5 p+a p=a C-C$ oe $p(5+a)=a C-C$ oe $[p=] \frac{a C-C}{5+a}$ or $\frac{C(a-1)}{5+a}$ oe	M1 M1 M1 M1	Expanding brackets Collecting p terms on one side, remaining terms on other, dep on having an ap term Factorising p terms (may be implied by FT correct division); dep on having an $n p$ term and an ap term Final division by factor Allow B4 for $[p=] \frac{a C-C}{5+a}$ or $\frac{C(a-1)}{5+a}$ oe	Each M1 is for a correct constructive step, FT previous error if of equivalent difficulty For M4, answer must be fully correct Making C the subject instead of p can earn at most M1M1M0M1

4	(a)		$\begin{aligned} & 5 a+5 b[=2 a b] \\ & 5 b=2 a b-5 a \text { oe } \\ & {[5 b=] a(2 b-5) \text { oe }} \\ & {[a=] \frac{5 b}{2 b-5} \text { oe }} \end{aligned}$ Or for those who divide first: $\begin{aligned} a+b & =\frac{2 a b}{5} \\ a-\frac{2 a b}{5} & =-b \\ a\left(1-\frac{2 b}{5}\right) & =-b \text { or } \frac{a}{5}(5-2 b)=-b \\ a & =\frac{-5 b}{5-2 b} \end{aligned}$	M1 M1 M1 M1 Or M1 M1 M1 M1	for expanding brackets correctly for collecting a terms correctly on one side, non-a terms on the other, FT for factorising correctly FT; may be implied by final answer for correct division FT by their two-term factor oe for each mark [apply equivalent FTs as above] MO for triple-decker fraction in final answer	[no ft for remaining Ms from rhs = $2 a+b$ oe resulting in one a term when rearranged] condone no equation award 4 marks only for correct work; withhold last M1 if further work such as incorrect cancelling
	(b)	(i)	2	1		
		(ii)	$6 x+3$ as final answer	2	M1 for 2(3x+4)-5	

5	(a)		5 and -5	3	B2 for one of these Or M1 for $x^{2}=25$ Or B1 each for embedded answers	
	(b)		$[a=][\pm] \sqrt{\frac{S}{2}-2 b c} \text { or } \sqrt{\frac{S-4 b c}{2}} \text { oe }$ as final answer	3	nfww M1 for $2 a^{2}=S-4 b c$ or for $\frac{S}{2}=2 b c+a^{2}$ M1 for $\frac{S}{2}-2 b c=a^{2}$ or $\frac{S-4 b c}{2}=a^{2}$ or FT M1 for $[a=][\pm] \sqrt{\frac{S}{2}-2 b c}$ oe or FT ; award last M1 at stage of final answer Or M2 for complete correct inverse flow diagram and M1 for final answer SC1 if no working, and final answer appears with just one error	M1 for each of FT correct, constructive steps leading to answer, eg last M1 FT their $a^{2}=\ldots$ The square root symbol must extend to include at least the start of the second term, if there is one, and below the fraction line For mixture of fractions and decimals or triple decker fractions etc, award M0 where they first occur (unless they sort them later) then ft

6	(a)	$\begin{aligned} & a=6 \\ & b=20 \end{aligned}$	1 2	M1 for $b=2+3 a$ seen Or B1 for their answer FT $2+3 \times$ their a	
	(b)	$[p=] \sqrt[3]{\frac{c H^{2}}{10}} \text { oe }$	4	nfww M1 for $H^{2}=\frac{10 p^{3}}{c}$ M1 for $\mathrm{cH}^{2}=10 p^{3}$ or FT their expression for H^{2} M1 for $p^{3}=\frac{c H^{2}}{10}$ or FT M1FT for cube root of their expression for p^{3}; cube root symbol must extend below fraction line	ie M1 for correct squaring M1 for dealing correctly with denominator of fraction after squaring M1 for dealing correctly with result to get p^{3} as subject M1 for correctly finding cube root of their expression for p^{3} (middle two Ms may be earned for a combined step) Award full marks only if fully correct

7	(a)		$15 \quad 1$	$1+1$		

8	(a)	± 3	3	Both required B2 for one solution or for $x= \pm \sqrt{9}$ or for $2 x= \pm 6$ Or B1 for $x^{2}=9$ oe or $x=\sqrt{\frac{36}{4}}$ or for $2 x=6$ OR SC1 for $3^{2}=9$ or $4 \times 3^{2}=36$ SC1 for $(-3)^{2}=9$ or $4 \times(-3)^{2}=36$	ie 2 marks if one step away from full marks, 1 mark if two steps away
	(b)	$[A=] 6 c^{2}$	2	nfww Accept unsimplified eg 2 for $A=6 \times c^{2}$ M1 for $c^{2}=\frac{A}{6}$ or for $A=k c^{2}$ with $k \neq 6$ or for correct unsimplified expression for A eg $[A=](c \sqrt{6})^{2}$	Condone a instead of A

9	(a)	± 4	3	B2 for one solution Or M1 for $y^{2}=16$	
	(b)	$4 a-a c=6+3 c$ $a(4-c)=6+3 c \text { or } \mathrm{FT}$ $[a=] \frac{6+3 c}{4-c}$ or $\frac{-3 c-6}{c-4}$ or FT as final answer	M2 M1 M1	oe; for correctly collecting a terms on one side, non-a terms on the other; M1 if one sign error For correct factorising; may be implied by final answer; FT if at least M1 gained oe with numerator factorised; FT if at least M2 gained	may be done earlier

10	(a)	Height of triangle $=h-e$ oe Tan $a=\frac{h-e}{d}$ or $h-e=d \times \tan a$	1 1	May be on diagram If $\mathbf{0}$ in question, allow SC1 for clear attempt to use $\tan a=$ opp/adj with $\operatorname{adj}=d$ even if opp $=h$	eg y shown on diagram and $h=y+e$ used
	(b)	17.3(...) or 17	2	M1 for $1.7+25 \times \tan 32$	
	(c)	$[a=] \tan ^{-1}\left(\frac{h-e}{d}\right) \text { oe }$	3	Accept invtan, arctan, condone lack of brackets M1 for $h-e=d \times \tan a$ M1 for $\tan \mathrm{a}=\frac{h-e}{d}$ If $\mathbf{0}$, allow SC1 for $[a=] \tan ^{-1}$ (their expression for $\tan a$)	eg after first step of $\tan a=\frac{h}{e+d}$ allow SC1 for $a=\tan ^{-1}\left(\frac{h}{e+d}\right)$

11	(a		$\begin{aligned} & {[11 a+5 c=] 6 d+2 c d} \\ & 5 c-2 c d=6 d-11 a \\ & c(5-2 d)=6 d-11 a \\ & {[c=] \frac{6 d-11 a}{5-2 d} \text { oe }} \end{aligned}$	M1 M1 M1 M1	Expanding brackets Collecting c terms on one side, remaining terms on other, dep on having a cd term Factorising c terms (may be implied by correct division); dep on having an $n c$ term and a cd term Final division by factor allow B4 for [$c=] \frac{6 d-11 a}{5-2 d}$ oe	condone d6 etc Each M1 is for a correct constructive step, FT previous error if of equivalent difficulty for M4, answer must be fully correct
	(b)	(i)	8	1	mark final answer	
		(ii)	$5 x-7$	2	mark final answer M1 for $5(x+1)-12$ soi	

12	(a)		$r=[\pm] \sqrt{\frac{S}{4 \pi}}$ oe as final answer	3	nfww For all 3 marks, ' $r=$ 'must be stated; allow SC2 if rhs is correct OR M1 for $\frac{S}{4 \pi}=r^{2}$ or $\sqrt{S}=\sqrt{4 \pi} r$ oe M1 for taking square root correctly FT their $r^{2}=\ldots$ or $4 r^{2}=\ldots$ oe or for $\frac{\sqrt{S}}{k}$ oe ft their $\sqrt{S}=k r$ If M0, allow B1 for $[r]=\frac{\sqrt{S}}{4 \pi}$ Or allow B1 for correctly finding r as the subject FT a wrong first step	Allow 'triple decker' fractions for Ms but not for 3 marks eg 2 for $r=\sqrt{\frac{S \div 4}{\pi}}$ (square root symbol must extend below fraction line) M0 if r is on both sides Allow M1 for complete correct reverse flowchart
	(b)	($\frac{3}{10} \text { oe }$	1		
		(ii)	0 found as denominator without further wrong working/comment	1	Accept denominator $=0$ oe or 'cannot calculate $3 / 0$ ' or ' $3 / 0=$ error'	0 for $3 / 0=0$ or for $3 / 0=3$ etc or 'you can't divide 0 by 3'

